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UNIFORM ERROR ESTIMATES 
OF OPERATIONAL QUADRATURE METHODS 

FOR NONLINEAR CONVOLUTION EQUATIONS ON THE HALF-LINE 

P. P. B. EGGERMONT AND CH. LUBICH 

ABSTRACT. We study uniform error estimates of operational quadrature meth- 
ods for nonlinear convolution equations on the half-line. Equations of this kind 
arise in control engineering and diffusion problems. The essential ingredients 
are the stability of the operational quadrature method in an L2 setting, which 
is inherited from the continuous equation by its very construction, and a the- 
orem that says that the behavior of the linearized equations is the same in all 
Lp spaces ( I < p < oo ). 

1. INTRODUCTION 

1.1. Problem statement. In this article we study quadrature methods for the 
numerical solution of nonlinear Volterra convolution equations 

rt 
( 1.1 ) x(t) + j k(t - r) g(T, X(T)) dT = f(t), t E (O, oc). 

We derive uniform error estimates over the whole half-line in situations where 
problem (1.1) behaves stably. As a criterion for bounded input-bounded out- 

put stability of (1.1) we find that the classical L2 Circle Condition Theorem 
extends to L?? (in fact, to all Lp spaces with 1 < p < oo ). Precise assump- 
tions on k and g will be formulated later, but here we remark that weakly 
singular kernels like k(t) = t 1/2 and smooth kernels as, e.g., e t or cost are 
equally admitted throughout the paper. For convenience we limit our attention 
to scalar equations (1.1), although this restriction is not really essential. 

Problems of the type considered here arise as feedback systems in control 
engineering, as boundary integral equations in diffusion problems, and in vis- 
coelasticity. See Desoer and Vidyasagar [6], Corduneanu [4], Cannon [3], Ghez 
[8], Pipkin [16], Lodge et al. [12], Linz [1 1], Brunner and van der Houwen [2], 
and references therein. 

We remark that for the special case k(t) = 1 our results give estimates of 
linear multistep methods applied to nonlinear differential equations which may 
be arbitrarily stiff. This aspect will be further elaborated in a subsequent article. 
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1.2. Operational quadrature methods. A discretization of (1.1) should conserve 
the convolution structure (which via fast Fourier transform techniques allows 
for computational efficiency) and should be able to follow the long-time behav- 
ior of the continuous problem (1.1), which to a large extent is determined by 
conditions on the range of the Laplace transform of the kernel, 

K(s)= e stk(t)dt, Re s>0. 

Here we study operational quadrature methods. They replace (1.1) on an equidis- 
tant grid tn = nh (n = 0, 1, 2, ...) by a discrete recurr-nce relation 

n 

(1.2) X7 + h E k(n-j, h) g(tj, xj) = fn, n > 0, 
j=0 

where xn is to approximate x(tn). Here the weights k(n, h) are defined as 
the coefficients of the generating function (see Lubich [14]) 

(1.3) hZk(n,h)V = K( < ))1 <i, 
n=O 

where 5(') is the quotient of the generating polynomials of a linear multistep 
method. A practical choice is provided by backward differentiation formulas of 
orders 1 < m < 6, which correspond to 

(1.4) 5(c) E 

The right-hand side fn in ( 1.2) equals essentially f (tn), but may also contain a 
correction of the convolution quadrature by a linear combination of hg(tj, xj) 
for a few of the first j = 0, 1, ..., J. This possibility is included in order to 
take account of the behavior of g(t, x(t)) near t = 0, similar to the familiar 
endpoint corrections of the trapezoidal rule. 

Under reasonable assumptions it is known that xn approximates x(tn) with 
the same order as the underlying multistep method (O(hm) for (1.4)), uniformly 
on bounded intervals. We also remark that k(n, h) approximates k(nh) for 
nh bounded away from 0 with the order of the multistep method, again under 
suitable assumptions on K(s). 

Of course, to apply method (1.2-3), the Laplace transform K(s) of the kernel 
needs to be known. In many applications this is no restriction: In diffusion 
problems the analytical derivation of the integral equation first yields K(s), 
from which k(t) is only then obtained by Laplace inversion (if at all). Also, 
modelling of feedback systems is done in terms of the transfer function K(s) 
rather than the kernel k(t). We emphasize that explicit knowledge of k(t) is 
not necessary . 

A FORTRAN program for equation (1.1) with k(t) = t-1/2, based on BDF 

methods (1.4), is given in Hairer et al. [9]. That paper describes also a fast so- 
lution technique for the discrete nonlinear convolution equation (1.2) which re- 
quires O(N(log N) 2) operations to compute x0, .I. ., XN, based on fast Fourier 
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transforms. The computation of the quadrature weights (1.3) for general ker- 
nels again uses fast Fourier transforms and is described in Lubich [14]. An 
implementation of equation (1.2) as a finite-term recurrence relation is possible 
if the generating function (1.3) is rational. 

1.3. Outline of the paper. Our aim in this article is to derive uniform error 
estimates for the discretization ( 1.2) of equation ( 1.1 ) over intervals of arbitrary 
length. As might be expected, this involves problems of consistency and I' 
stability. The problem of quadrature errors over the half-line is well understood 
with the techniques (and under the assumptions) of Lubich [ 14]. It is really the 
1? stability problem on which we have to concentrate here. 

For equations of the above type (1. 1), there is a well-developed theory in an 
L2 setting. The Circle Condition Theorem (Theorem 2.1 below) says that if 
there exists a circle in the complex plane such that 09 takes all its values inside 
the circle and - 1/K(s) takes all its values outside of it for Re s > 0, then we 
have an L2 estimate 

(1.5) IIx - x|IL2(R+) < C lIf fllL2(R+) 

for solutions x, x corresponding to right-hand sides f, f in (1.1). It turns out 
(Theorem 2.3) that under exactly the same conditions on K and g as in the 

12 continuous case, solutions of the discrete equation (1.2) satisfy the / analogue 
of (1.5) with the same constant c as above for all h > 0 if the underlying 
multistep formula is A-stable, i.e., if 

Re 3(c) > 0 for I4l<1. 
2~~~~~~~~~~~~~~~~~~~~~ We obtain 1t stability estimates for A(7r - 69)-stable methods with 6 > 2, i.e., 

those satisfying 
Iarg3(C)t < 0 for ICI < 1, 

if K(s) satisfies the circle condition in the sector I argsl < 0 instead of just 
Re s > 0. The tools in ?2 are Parseval's formula and the Banach contraction 
principle. 

The key step in the transition from L2 to L?' in (1.5) is made in ?3. The- 
orem 3.1 in its simplest form states that if the equation 

rt 
(1.6) y(t) + fb(t - T) a(T) y(T) dT = f(t), t > 0, 

is (uniquely) solvable in L 2(R+) for every f E L 2(R+) , then it is also (uniquely) 
solvable in L?c7l(R+) for every f E L' (R+). Here b E L1(lR+) and a E 
Lc* (R+). Moreover, there is an important uniformity: If we let a vary in 
some bounded subset _v of L?0(R+), and if the solutions of (1.6) satisfy 

IIYIIL2(R+) < C lIf IIL2(R+)I 

with a constant c which is independent of a E , then also 

IIYIILOO(R+) < C' 1flILL(R+) 



152 P. P. B. EGGERMONT AND CH. LUBICH 

for some constant c' < x which can be chosen independently of a E v . This 
will allow us to obtain L?' estimates for linearizations of (1.1) around arbitrary 
functions x. There is a similar uniformity with respect to certain classes of Ll 
kernels b. For our purposes this will be particularly important in the discrete 
analogue (Theorem 4. 1), because it leads to I' estimates. Theorems 3.1 and 4.1 
generalize results of Eggermont [7], where an extra assumption b(t) = Q(tfal) 

as t -? Xo was needed. Here "just" b E L1 (R+) is enough. 
Section 5 contains the L?? version of the Circle Condition Theorem: Solu- 

tions of (1.1) satisfy an estimate (1.5) with L2 replaced by L?, 

(1.7) IIXXI ILoo(R+) ? c' fIIL(a+) 

if the assumptions of the L2 Circle Condition Theorem are met and, as a 
necessary extra condition, if the linear equation ( 1.1), with g(t, x) = Ax and A 
the center of the circle, has an integrable resolvent. The ingredients of the proof 
are as follows: We first apply the L2 Circle Condition Theorem to linearizations 
of (1.1) around arbitrary functions x(t). With Theorem 3.1 we then obtain 
L?? estimates for the solutions of the linearized equations, uniformly in x. 
The mean value theorem then allows us to pass from the linearizations to the 
nonlinear problem. 

In ?6 we derive I' stability estimates for solutions of the discretized equa- 
tion (1.2) . This uses the results and techniques of the preceding sections. To 
verify the conditions of Theorem 4.1, our analysis requires some assumptions 
on K(s) in addition to those of the L?' Circle Condition Theorem 5.1. They 
do, however, not seem restrictive for the above-mentioned applications. 

In ?7 we combine the I' stability estimates with results on the quadrature 
error to obtain at last uniform convergence over the whole half-line, of the order 
of the underlying multistep method. 

Finally, in ?8 we give the Circle Condition Theorem in Lp for 1 < p < 00. 
The main ingredients here are the M. Riesz convexity theorem, and once more 
Theorem 3.1 . 

2. THE L CIRCLE CONDITION THEOREM AND / STABILITY 

OF THE DISCRETIZATION 

We consider equation (1.1) denoted as 

(2.1) X + k * g(x) = f in L 2(R + 

where * denotes convolution, and [g(x)](t) = g(t, x(t)). The following con- 
ditions on k and g will be assumed throughout: 

k is locally integrable and has a Laplace transform K which is 
a continuous function from U+ into U. 

Here C = C U {x0} is the Riemann sphere, and C+ denotes the closed right 
half-plane including infinity. 

g is continuously differentiable on R+ x Rl, and g(t, 0) = 0 
for all t > 0. 
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The last condition is no real restriction, since otherwise in (2. 1) we replace g(x) 
by g(x) - g(0) and f by f - k * g(O) . It simplifies, however, the statement of 
results. Existence of solutions x E L2 (R+) will be shown for every f E L 2(R+ ), 
instead of f - k * g(O) E L2 (11+) . 

The following theorem is a classic in the control engineering literature, see 
Corduneanu [4], or Desoer and Vidyasagar [6]. Early versions of it are due to 
Sandberg [17] and Zames [19]. 

Theorem 2.1 (Circle Condition Theorem in L2 ). In addition to the above as- 
sumptions on k and g, suppose that for some real A, I 

(2.2) | A(t, x) - < I for all t, x, 

and there exists a positive number d such that 

(2.3) A > I + d for all Res > O. 
K(s) 

Then the integral equation (1.1) has a unique solution x E L2(R+) for every 
f E L2(R+). Moreover, if x and x* are the solutions of (1.1) corresponding to 
f, fE L2(I(R+), then 

(2.4) IIX- XlL2(R+) < C lf - fIL2(R+) 

with c=(JAl +I+d)/d 

Remark. In the engineering literature the condition (2.3) is usually formulated 
in terms of the Nyquist diagram {K(iwo): co E R}. In this case, (2.3) is required 
to hold only for Re s = 0, and the condition for Re s > 0 comes from the 
additionally needed information that the Nyquist diagram does not encircle the 
negative reciprocal of the disk of (2.3), i.e., {-1/z: Iz - AI < l} . 

As a first major step in the proof we want to get rid of the (possibly) un- 
bounded operator, embodied by the convolution with k, on L 2(R1+). Note 
thatfor A =0,wehave IK(s)< (I+ d) 1 forall Res > 0,soassume A$O 0. 
We then define the resolvent r. as the solution of 

(2.5) rA + Ak * rA = Ak on JR+. 

One verifies that r. is locally integrable, e.g., by Picard iteration on arbitrary 
intervals [0, T] for finite T, and that it has a Laplace transform R. given by 

RA(s) = A K(s) /[I +A K(s)], Re s > 0. 

It follows from the circle criterion that 

JR,(s)J < )Aj/(I+d), Re s > 0, 

and consequently that for every x E L 2(R+ ), 

(2.6) llr, * xIIL2(R+) < JAI / (I + d) HIxIIL2(R+) 
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by Young's inequality and Plancherel's formula, see Stein and Weiss [18, p. 178 
and p. 17]. In other words, convolution with r. is a bounded linear operation 

on L 2(R+). It now follows that if x satisfies equation (1.1), then it also satisfies 

(2.7) x + A lr, * (g(x) - Ax) = f - r. * f, 

and vice versa. 

Proof of Theorem 2.1. We consider equation (2.7) and let 

2 D(x) = A' r * (g(x) - Ax) A 

Then for x, x E L 2(R1+) we get by (2.6), the mean value theorem and condition 
(2.2) that 

jjc(x) - I(N)IIL2(R+) < 1 + d j|x - XIIL2(R+) 

so that .D is a strong contraction. It follows from the Banach contraction 
principle that (2.7), written as x+D(x) = v , has a unique solution x E L 2(R+) . 
Moreover, if x and x correspond to v and v, then 

(2.8) IIX - XIIL2(R+) < d IIv VlIL2(R+) 

Finally, if v = f - rA * f and v =f-r* f,then 

jIV - VIIL2(R+) < C Ilf fIIL2(R+) 

with C = sup Res>0 I' - R.(s)I < (I + d + 1I1)/(1 + d) by Plancherel's formula 
and (2.3). Putting it all together, we finally obtain (2.4). o 

We note a special case of the circle condition theorem where A can become 
arbitrarily large. 

Corollary 2.2. Suppose that for some A > 0 , p < 1, 

(2.9) g -A < pA everywhere, ax 
(2.10) ReK(s) > 0 for all Res>0. 

Then equation (1.1) has a unique solution x E L2((R+) for every f E L 2(R+). 
Moreover, the estimate (2.4) holds with c = (1 - p)- 

Remark. Corollary 2.2 is actually well known in the theory of general Hammer- 
stein (integral) equations 

(2.11) x+Xg(x)=f inL2 

with g as in the corollary, and where X is densely defined and mootone, 
i.e., 

(2.12) Re (x, Xx) > 0 

for all x in the domain of Z . See Kolodner [10, ?3.2]. Condition (2.12) is 
equivalent to (2.10) when X is a convolution operator. When (2.12) holds, the 
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11 2 operator A)(I + ) 1X has a bounded extension to all of L and with norm 
bounded by 1, for all A > 0. This operator is the analogue of the resolvent 

r. in (2.5). With this modification, the work of Kolodner is readily applied to 
(2.1 1). o 

We now turn to the discretized problem (1.2), keeping the previous assump- 
tions on k and g . We suppose that the discretization method (1.3) is A-stable, 
i.e., 

(2.13) Re 5(C) > 0 form < 1. 

By Dahlquist's [5] order barrier, the order of the method, given as the number 
m in the relation h-l1(e-h) = 1 + O(hm), cannot exceed 2 under condition 
(2.13). In many cases, this restriction is not really necessary. If K(s) satisfies 
the circle condition (2.3) in a sector I args < 0 with 0 > I , then the following 
result remains valid for A(7r - 0)-stable methods, i.e., for those with 

(2.14) 1argd(C)l < 0 for I4I<1. 

We remark that the BDFmethods (1.4) satisfy (2.13) for m = 1 and 2, and 
(2.14) with r - 0 = 880, 730, 510, 180 for m = 3, 4, 5, 6, respectively. 

Theorem 2.3. Under the same conditions on k and g as in the Circle Condition 
Theorem 2.1 and under the A-stability condition (2.13), the equation (1.2) has 

2~~~~~ a unique solution X = {X nOE 12 for every f = { fn }n> E 12, for arbitrary 
h > 0. Moreover, if x, x correspond to f, I E 12, then 

(2.15) IX - 
.kj112 < C Ilf - J112 , 

with c as in Theorem 2.1. In particular, c is independent of h. 

Proof. We define the discrete resolvent by (cf. (2.5)) 
n 

(2.16) r,(n, h) + h , Ak(n- j, h)r,(j, h) = Ak(n, h), n > 0 . 
j=O 

Forming the generating function and using (1.3), we find 

(2.17) h Zr (n, h)' =RA 
n=O 

where again RA(s) = AK(s) / (1 + AK(s)) is the Laplace transform of the con- 
tinuous resolvent. By the A-stability condition (2.13) we have 

sup< 
R 

A5 ( h) 
< 
-Se>p0 IR. (s) for all h > O 

By Parseval's formula the left-hand expression bounds (and in fact equals) the 
1 norm of the convolution operator 

{ rn J f 
ffnln ? > h ,r r(n -j, h)fj 
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which is therefore bounded by IAH / (I + d) as in (2.6). Now as in the continuous 
case (2.7), equation (1.2) is equivalent to 

n n 

(2.18) xn + A 1h Er,A(n - j, h)(g(tj, xj) -Axj) =fn - hEr(n- j, h)fj. 
J=0 j=0 

The interpretation of (2.17) is now that to obtain (2.18) we could have ap- 
plied the operational quadrature method directly to equation (2.7). The proof 
proceeds now as that of Theorem 2.1. E 

Remark. The results of this (and the subsequent) sections are easily extended 
to systems of equations (1. 1). An L2 estimate (2.4) is obtained if there exists a 
matrix A and an invertible matrix B such that for some suitable matrix norm 
11.11 1 

(2.19) Bl (-?g -Ax) <I everywhere, 

(2.20) JI(I + K(s)A) lK(s)BII < m for Res > 0, 

with Im < 1. The constant c in (2.4) is then c = C/(1 - tm) with C = 

sup 11(I + K(s)A) 1 1 , taken over Res > 0 . The same constant still appears in 
the multidimensional version of Theorem 2.3. 

3. ON LINEAR CONVOLUTION-LIKE OPERATORS 

Let b E L1 (IR), and let e E C(R) with e(0) = 0. We consider the class 
Y9(b, e) of measurable functions k on JR2 for which there exists a positive 
constant ,u such that 

(3.1) Ik(t, T)l < ,u bC((t- T)), a.e. t, T E R 

and 

(3.2) sup Ik(t + h, T)- k(t, T)I dT e(Qh). 
t D 

Note that if k(t, T) = b(t-T)a(T) for a e L?(R), lIaIILOO(R) < 1, then (3.1-2) 
are satisfied for a suitable function e. 

Let Q denote either R or R+ (or any subset of IR, for that matter). Then 
k generates a linear integral operator X defined by 

(3.3) Xx(t) = fk(t, T) X(T) dT, tE Q, 

which maps any LP(Q) into itself for 1 < p < oo, and for all x E LP(Q) we 
have 

(3T4) i aXX'iLP(i) Se an b1eLs R)18Xp.LP(7)9 

This is essentially Young's inequality, Stein and Weiss [18, p. 179]. 
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The class of operators X given by (3.1-3) is also denoted by 9(b, e) . For 
such operators we may define the spectrum with respect to L (Q) in the usual 
way by 

(3.5) uP(X) = {EE C : Ag - X has no bounded inverse on Lp(Q) 

We are interested in obtaining existence theorems for equations Ax - Xx = f 
in L? (Q) starting from the L2(Q) theory, so we would like to show that 

u0 (X) C a 2(), possibly even with equality. Since we are interested in 
nonlinear equations , we need some sort of uniformity in the above result. 
In Eggermont [7], the following theorem was proved for p = 2 under the 
assumption 

(3.6) b(t) = O(ItK(l), Iti -> x0; 

here we show that we can do without it. The method of proof remains essentially 
the same, however. 

Theorem 3.1. Let 'c 9(b,e), let A E C and let 1 < p < oo. If A 0 up(X) 
for all X E ' and 

(3.7) sup II(LY-)YIILP(Q) < 00 

then A 0 o' Q(X) for all X%e and 

(3.8) sup II(L -)Y ||IL??(Q) < 00 

Here the suprema are taken over all X E . 

In this generality, the question what happens when p = 1 is just beyond our 
reach. Even the simple case when ' = {X} is a singleton is not clear, but if 
the class ol is essentially closed under adjugation, then the case p = 1 can be 
handled as well; see ?8. Perhaps this is the right time to mention the work of 
Barnes [1]. He considers the class of integral operators X%, (3.3), which (only) 
have the property that for some a > 0, 

(3.9) esssupj (1+ it- -I)0 {fIk(t, T)I+ Ik(T, t)I }dT 
te It-Tl>n 

is bounded for n = 0, and tends to zero as n -- 00. For such operators 
Barnes proves [1, Theorem 4.8(2)] that Up (X) U Up (XT) is independent of 
p, 1 < p < 00. Here, X T is the integral operator with kernel k(Tr, t) (as 
opposed to k(t, T) for the operator X ). In particular, then, aup(X) c a2(X) 
1 < p < oo. Compared to our work, the big difference is the absence of (an 
analogue of) condition (3.2). 

We proceed to prove Theorem 3.1. We begin by breaking the proposition in 
two. 

Proposition 3.2. Let 1 < p < oo, let ' c 9-(b, e), and let l E C . If there 
exists a constant c > 0 such that for all E o' and for all x E LP(Q), 
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then likewise for some c' > 0, and for all X% eE % and for all x E L? (Q) 

(3.1 1) LAX - 'XILoo(U) > C IIXIILoo(U) 

Proposition 3.3. Let 1 < p < oo; then for X% E Y(b, e), 

a9 (X5) C au(X 

Using Propositions 3.2 and 3.3, we can now prove Theorem 3.1. 

Proof of Theorem 3.1. Evidently, (3.7) implies (3.10), and thus also (3.1 1). 
From Proposition 3.3 we get that A 0 a' (2) for all X% E % and thus 

- X% is invertible on L?? (Q). Combined with (3.1 1), this gives (3.8). o 

We now set out to prove Proposition 3.2. The proof of Proposition 3.3 will be 
omitted, since it is essentially the same as the proof of Lemma 4.3 in Eggermont 
[7]. The extra condition (3.6) is not used there. 

We begin by proving some results about certain weight functions. They pro- 
vide the crucial steps in the proof of Proposition 3.2. 

Lemma 3.4. Let { tn }n c Q be arbitrary, and set 

(3.12) ant = (1 +| n ) , t E R 

Let r = (2bL(R)V'I and let wn(t) be the solution of the convolution equation 

(3.13) wn(t) r b(T - t)Wn(T) dT = an(t), t E R, 

and vn (t) = [wn (t)] I/P , where 1 < p < 00. Then the following holds, uniformly 
in n and tn: 

()Wn (t) > O for all t E R1; 
(ii) VnIILP(Q) = O(n"lp), n -+ oo; 

(iii) There exists 3 > 0 such that vn(t) > 2 for all t with t - ttn < 3; 

(iv) f b(T-t)wn(T)dT < rw,n(t), t E R; 
(v) There exists a constant c such that for all t, zT E R with t - TI < <n, 

Ivn (t) - Vn(T)I < Cvn(T) (It -TIn)'/P 

Proof. Setting b(t) = b(-t), we write (3.13) as wn- rb * = an X with the 
solution given by wn = an + , * an , where 

00 

r Erk b*k E Ll(R) 
k=1 

in which b*l = b and b*(k?l) - b * b*k Since b(t) > 0 for all t, then 
Wn(t) > an(t) > 0 as well. This is (i). So vn is well defined, and IIVnIIPLP(O) = 

IIWnILI(Q) = 2 11nH L'(Q) < 27rn. This is (ii). Part (iii) follows from vn(t) > 

[an(t)]'/P . Part (iv) follows from the equality b *wn = r I(wn-an). To prove 
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(v), note that an (t) satisfies 

Ian(t) - an(T)i < c1 an(T) it - TI/n 

for all T, t E R with it - T < n. Then writing 

wn(t) - wn(T) = an(t) - an(T) + / ,B(r) [an(t - r) - an(T - r)]dr, 

we obtain for I t - TI < n that 

iwn(t) - wn(T)i < c, It - Ti/n (an(T) + j ,B(r) an(T - r)dr) 

< C1 Wn(T) it-rTi/n. 

Finally, since f(x) = xllp(x > 0) is Lipschitz continuous of order p, we get 
that for some constant c2, 

ivn(t) - Vn(T)i = i[Wn(t)]1p -[w n(T)] 1/p < C2 iWn(t) - Wn(T)i 1/P 

By the above estimate, (v) follows. o 

Lemma 3.5. Let V(t) = min{ItI11 /(1P , 1 } for t E RK and let 

rn( ) = v()_ 1. 
Vn (T) 

Then 

en = b(t) V(t/n) dt -0 O as n - oo, 

and 

Bn = sup J b(t- T)Iln(t, T)i|/[V(lt - Ti/n)]-1 dt 
TECR R 

remains bounded as n -- oo. 

Proof. It is easy to see that en -+ 0 as n -x oc: since V(I) -O 0 as n oo for 
every t (though not uniformly), the dominated convergence theorem does the 
trick. To estimate Bn , we need to split the integration interval. First of all, the 
part of the integral over It - Tr < n is bounded by 

f ~~~~~~in (t I r)i Cf 

t-< b(t-rT) it - T ) dt < c | b(t- T) dt 

by Lemma 3.4 (v), and this is bounded by c iibiiL1(R). For the part of the 
integral over It - Tr > n we first note that here V(It - TI/n) = 1 , and secondly, 
since both vn(t) and Vn(T) are always positive, that 

I 1 T) =vn (t) - Vn (r) <max{ vn(t), IVn(r)} 
iln(t r)i = v(r) v() (T) 

and so surely 

l (t, T)IP < [v n(t)f + [Vn(T)] 
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So we have that 

/ b(t- T) l|n(t, T)A dt < b(t- T) 
Wn (T) 

)dt. 
t-Tl>n 

[VqIt - Tl/n)]P1' / -lnInT 

But now we may extend the domain of integration to all of IR, and then Lemma 
3.4(iv) shows that this is bounded (by r I+ llbllL'(R) )'So Bn remains bounded 
as n -oo. o 

Proof of Proposition 3.2. As in Eggermont [7], we note that without loss of 
generality we may assume that ,u = 1 in (3.1), and that A 5# 0. We may then 
as well assume that A = 1 . 

Let us suppose by way of contradiction that (3.1 1) does not hold. Then there 
exist sequences {n} C %' and {xn} c L??(Q) such that 

(3.14) llxn --0Xn Xn IIL ??(Q) 0 (n )2 as n -- 
xo 

and llxn,JLoo(U) = 1 for all n . 

Observe that from (3.2) it follows that 

Jlxnn (t + h)-XnXn (t) I < e(h) 

for all n, and all t E Q with t + h e Q, so that {5nx }nl is equi-uniformly 
continuous on Q. Note that from (3.14) we have that 

I'lYnxn1IL?() > I -O(n ). 

It follows that Yn = lXn n/IXnLO(Q) satisfies yn -nYnL?(U) 
= O(n) 

and fYnln is equi-uniformly continuous. Since IlYnIlL?(0) = 1 there exists a 
EE Q such that lyn (tn)I > 2 , and by the equi-uniform continuity there exists 

a d > 0 such that 

lyn(t)I > 3 for all tEQ, It-tnl < d. 

Now consider vn E LP(Q) (by restriction from IR to Q ), defined in Lemma 
3.4. Then 

~~vnyn - ~ = O(n -2?l/P) =- ( llvnyn - Vn-71nYnLP(Q) = O(n =O(n 

as n -- 00. Also, 

InYnILP(Q) > ft-tn <d 13 n(t)IP dt > d 

tEQ 

for some d* > 0, for all n. Consequently, 

(3.15) | lVnyn 
- 

-nyn LP() 0 (n -x 00). 

Now suppose that for all y E L??(Q) 

(3.16) <vn5ny ? -flVnYIIfLP(Q) 
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with E* O ?; then (3.15) implies that 

Vnn -l n Vyn 11LI ( Q) (n>x 

It follows that (3.10) does not hold, and the theorem is proved. So we must 
show (3.16). The expression on the left of (3.16) may be written as 

en JQjkn (t, T) 'n (t , T) Zn (T) dT dt 

where z n = V ny and with ln(t, T) as in Lemma 3.5. Applying Holder's in- 
equality, we obtain (I + 1 = 1) q 

(3.17) en< nMn 

where 

n sup { 1kn(t, T)l V(t - T/n) dT} 
tE-Q 

and 

M= f kn(t, T)H1ln(t, T)| /[V(t - T/ln)]p/q I Zn(T) dl dt, 

in which V(t) = t 1'/ 1} . Now with (3.1), 

En < sup { fb(t-T) V(t - T/n) dT} < en 

with En as in Lemma 3.5. The last inequality comes about when Q is replaced 
by R. Thus, En - ? as n --oo. 

Interchanging the order of integration, we estimate Mn as 

M_ K I Zn (T) l b(t - T)1 (t, T)P[V(lt - Tll/n)]P/q dt dT 

and so 

Mn <Bn 11ZnPLP(Q) 

with Bn as in Lemma 3.5. We now have from (3.17) that 

en < enBnllznH|LP(Q) I 

with E 'n 0 and Bn bounded as n -oo. This is (3.16). a 

4. ON LINEAR CONVOLUTION-LIKE OPERATORS: THE DISCRETE CASE 

In this section we state the discrete version of Theorem 3.1, or more appro- 
priately, the discretized version. 

Let b E L1(IR) and e E C(R), with e(O) = 0. Let CF(b, e) be the set of all 
bounded functions k on Z2 for which there exists a ,i > 0 such that 

(m-n+ 1 

(4.1) Jk(m, n)l <,u | b(/uit) dt 
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and 

(4.2) sup E lk(m + 1, n) - k(m, n)I < e(,ul). 
m nEZ 

Let Q = Z or Z+ (or any subset of Z). The kernel k generates an operator 
,: IP(Q) -, P(Q) by 

(4.3) (Xx)m = k(m, n)Xn, m E Q, 
nEQ 

for x E IP(Q), which is bounded by Young's inequality, viz. 

(4.4) II,-x llIp(,) < Ilb IIL'(R)IIXIIIP(Q) - 

The collection of operators X for which (4.1-3) holds is also denoted by 
cF(b, e). 

Theorem 4.1. Let ' c 4D(b, e) and let A E C. If A uP(gX) for all X E ' 
and 

sup lI(LJ - )I IIIP(Q) < 00 

for some p > 1, then A 0 a' (X) for all X E % and 

sup~(. I %71I I- < 00 

Here the suprema are taken over all X E F. 

The proof is similar to that of Theorem 3.1. The only noteworthy difference 
is that we cannot set ,u = 1 in (4.1-2), so in the proof of the analogue of 
Proposition 3.3 we have to consider the pln for each Xn as well. Beyond 
notational inconvenience, this poses no problems. We omit the details. 

5. THE L' CIRCLE CONDITION THEOREM 

We will now give the L' analogue of Theorem 2.1. As an extra assumption 
we require 

(5. 1 ) rj, E L1 (R+) 

where r, is the resolvent defined in (2.5). It can already be seen in the linear 
case g(t, y) = Ay of (1.1) that this condition is necessary. The question which 
conditions on the kernel k guarantee (5.1) has received considerable attention 
in the literature, see Londen [13] and references therein. A classical result in 
this context is given by a theorem of Paley and Wiener [15] which states that 
(5.1) holds if k E L'(R+) and 1 + AK(s) #0 for Re s > 0. We remark that 
this would also follow with Theorem 3.1, because lJ + %` 1' HL2(R?) < 00 

holds by Plancherel's formula, and (J+ %) 00IL'(R) < x is equivalent to 
(5.1). 
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Theorem 5.1 (Circle Condition Theorem in L? ). Suppose (5.1) and the assump- 
tions of the L2 Circle Condition Theorem 2.1 hold. Then the integral equation 
(1.1) has a unique solution x E L' (R+) for every f E L' (R+). Moreover, if 
x and x are the solutions of (1.1) corresponding to f, f fE L' (R+), then 

(5.2) IIX- xHlL?(R+) < C Ilf IIfL(R+) 

for some c < 00. 

Remark. The Lo' Circle Condition Theorem permits a local version in the 
spirit of Liapunov stability: If we assume (2.2) to hold only in a tube around a 
fixed solution x E L??(R+), i.e., in 

{ (t, x) : t > O, Ix -xk(t)l < e }, 

then the conclusion of Theorem 5.1 remains valid provided we have that 
Ilf - flIL-(R+) < 3 for some sufficiently small 3 > 0. (This can be seen 
by modifying g outside the tube such that it satisfies (2.2) everywhere. We 
then apply Theorem 5.1 and note that the solution remains inside the tube, so 
that it is not affected by the modification of g.) Such a local variant does not 
exist in the L2 theory. 

Proof of Theorem 5.1. We will first consider linearizations of equation (I1.1) and 
then conclude with the help of the mean value theorem. 

(a) For arbitrary measurable z: Ri+ -> IR we consider the linearization of 
equation (1.1) around z, 

y+k* (g(z)Y) =f, 

where a (z)(t) = a 9(t, z(t)) . Equivalently, y is the solution of the linearized 
equation (2.7), 

(5.3) y+? rA * (0 g(z)-A)y = v 

with v=f- r * f . The proof of Theorem 2.1, with y, 21 y, 0, 0 in the roles 
of x, g(x), x, v respectively, shows that (see (2.8)) 

IIYIIL2(R+) 
I 

d IIVIIL2(R+) for every v E L 2(R+). 

Now Theorem 3.1, whose assumptions are satisfied because of (2.2) and (5.1), 
yields 

(5.4) LVILoo(R+) ? c IVL?(1+) for every v e L??(lR+) 

where the constant c' is independent of the function z around which we lin- 
earized. 

(b) Now consider equation (2.7), 

(5.5) x+ -r' *(g(x)-Ax) = V 
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with v E L? (IRi+). By Picard iteration on finite intervals [0, T] it is easily 
verified that there exists a unique solution x which is measurable and locally 
bounded on R+. 

Let x, x: R+ -> IR be the solutions of (5.5) corresponding to v, v eL?(1R +). 
By the mean value theorem, we have that 

Og (5.6) g(t, x(t)) - g(t, xk(t))- g (t , z (t))(x (t) -xk(t)) 

for a certain measurable function z, so that x - x satisfies the linearized 
equation 

(x -) ?A-' r * ( (z)- A(x-x) = VV 

Now (5.4) implies that 

IIX- XHlLo(R+) < C IIV - 
vIIL(R+) 

Since g(t, 0) = 0 for all t, the solution corresponding to v) = 0 is x = 0, so 
that we also have 

IIXIILoo(R+) < C' IIVIIL?(R+) 

Finally, equation (1.1) is equivalent to equation (2.7), or (5.5), for v = f -r;*f, 
so that we obtain the unique solvability in L??(Ri+), as well as the Lipschitz 
continuity (5.2), with c = c' (1 + llr, IILI(R+)) . ? 

In Corollary 2.2 we obtained an L2 estimate which holds uniformly for all 
A > 0. To get L? estimates, uniformly in A, we need that the resolvent 
satisfies, for all A > 0, 

(5.7) r,(t)l < ,ub(/ut), a.e. t > 0 

(5.8) f 1 r(t+h) -r(t)ldt < d(/uh) for h > 0, 

with some ,u = #u(A) > 0 and functions b E L1 (R+) and d E C[O, oo), with 
d(O) = 0, which are independent of A. 

Corollary 5.2. Under conditions (2.9-10) and (5.7-8) the L? estimate (5.2) 
holds with a constant c which is independent of A > 0. 

This follows directly with the proof of Theorem 5.1, where now Theorem 3.1 
yields c' in (5.4) which is independent of A , and IIr, IIL'(R+) <llbll?LI (R+) 
Let us give frequency domain criteria which imply conditions (5.7) and (5.8). 

Lemma 5.3. Let {RAL}CEA be a family offunctions which are analytic and uni- 
formly bounded in a sector S: argsl < ep with (o > r2, and continuous at 0. 
Suppose that for every A E A there exists ,u = u (A) > 0 such that the following 
estimates hold for s E S: 

(5.9) IR(s) - R,(O)I ? Lls/Jula for Is/ul < 1 

(5.10) IR(s)I ? MIs/jI7lA for Is/l > 1I 
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with a > 0, ,B > 0, L and M independent of iA. Then R. (s) are the Laplace 
transforms offunctions r~(t) which satisfy conditions (5.7) and (5.8) uniformly 
in ALEA. 

For example, for k(t) = tc1 l/r(a) , i.e., K(s) = s ', the resolvent has 
Laplace transform R,(s) = AI(A + s'), and for A > 0 the assumptions of 

Lemma 5.3 are satisfied with ,u = Al/a and fi = a. They are also satisfied 
for A > 0 when K(s) is a rational function (with K(oo) = 0) which has 
Re K(s) > 0 for Re s > -a, with a > 0. This can be seen with the help of 

the following criterion. 

Lemma 5.4. Let 1/K(s) be analytic in a sector S: argsI < (p with p > 2, and 
continuous at 0. Suppose that there exist y > 0, ,B E (0, 2) and c > 0 such 
that 

(5.11) 1( ) - K Q5~Y(jsjy) for s -0 inS, 
K(s) K(O) 

(5.12) K() = csl + o(Qsl ) for s oo in S. 

Then r. (t), defined by its Laplace tranform Ri (s) AK (s)/( 1 + AK(s)), satisfies 
conditions (5.7) and (5.8) for all sufficiently large positive A. 

Proof of Lemma 5.3. We may assume R.(0) = 0 without loss of general- 
ity. Otherwise, we replace R,(s) by R,(s) - R~(0)/(1 + s/,u) and note that 

R(0)/( 1 + s/,u) is the Laplace transform of R,(0),ue Ht which satisfies (5.7) 
and (5.8). 

We then have IR,(s)l < B(s/l) with B(z) = c min(lzl', lzl7) for s E S. 

Inserting this into the Laplace inversion formula 

r (t) = 2 i jR(s)estds 

with contour F: argsl = q with I < q < , we get (5.7) with 

b(t) = B / B(z)leztl -dzl 

which satisfies b(t) = 0(1 +tA 1) for t -+ , and b(t) = 0(t 6t ') for t oo. 
Similarly, we get (5.8) with 

d(h) = 2 
( e I - 11 -dzl J7r Re zl 

which by dominated convergence is continuous also at 0, with d(O) = 0. o 
Proof of Lemma 5.4. Condition (5.12) implies that R,(s) is, for sufficiently 
large A, uniformly bounded in some sector of opening angle greater than 2' 

and satisfies (5.10) with ,u = A l/. To apply Lemma 5.3, it remains to show 

(5.9) for small ls//lAl. To this end, we expand 

Rs)j = 1 - ;AK(s) + (AKs )2 
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which by (5.12) converges for sufficiently large iA. For IsI > 1 we have by (5.12) 

R,(s) - RA(O) = O(Is51/A) 
while for 15s < 1 we get from (5.1 1) 

RA(s) - RA(O) = 0(Is|51 ). 
This gives (5.9) with a = ft if y > ft. Otherwise, a straightforward extension of 
the proof of Lemma 5.3, which takes account of the additional contribution for 
1sl < 1 , gives (5.7) and (5.8) with ,u = All and b(t) = O(t-G-') as t -- 00. 0 

6. THE If STABILITY OF THE DISCRETIZATION 

In ?2 we obtained an 12 stability result for A-stable discretizations (1.2), 

using no assumptions other than those of the L2 Circle Condition Theorem. 
We do not know if I' stability estimates exist under just the assumptions of the 
L? Circle Condition Theorem 5.1. Here we will show I' estimates under the 
frequency domain conditions of Lemma 5.3. These sectorial conditions allow 
us to include A(7r - 6)-stable methods with 0 > I (and thus also methods of 
order greater than 2) and will also be useful for obtaining uniform convergence 
of optimal order over the half-line in the next section. From now on we will 
assume the following about the discretization method (1.3): 

(6.1a) 3(4) is analytic and without zeros in a neighborhood of the closed 
unit disk 141 1, with the exception of a zero at 4 = 1. 

(6.1b) 6 (eh) = 1 + 0(h m) as h -+ O, for some m> 1. 
(6.1c) There exists 0 < 7r such that I arg 3(4)f < 0 for 141 < 1 . 

Condition (6. 1b) says that the method is of order m, and (6. 1c) expresses that 
it is A(7r - 0)-stable. We can now state the main result of this section. 

Theorem 6.1. Let the discretization method satisfy (6.1), and let the assump- 
tions of the Circle Condition Theorem 2.1 hold, with condition (2.3) satisfiedfor 
I arg sI < 0 with 0 of (6.1 c). In addition, suppose that the Laplace transform of 
the resolvent, RI(s) = AK(s)/(1 + AK(s)), is analytic in a sector S: I argsl < fo 
with q, > 0 of (6.1c), is continuous at 0, and satisfies 

(6.2) RR(s) = 0(1sl5 ) fors- xoo in S, 

R,(s)-RA(O) = 0(1s1s) for s - O in S 
for some a, ft > 0. Then the discretized equation (1.2) has a unique solution 
X = {x"} E lo? for every f = {ff} e 1??, for arbitrary h > 0. Moreover, if x 
and x are the solutions of( 1.2) corresponding to f, f e 1i, then 

(6.3) llx - xlllO <_ c Ilf - 1111- 
where c is independent of h > 0. 

We remark that condition (6.2) implies 

IrA(t)I < C * min(t l, ta-l) for t > 0 

(see Lemma 5.3), and hence rA e LI(R+), which is condition (5.1). 
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Corollary 6.2. Let the discretization method satisfy (6.1) and assume that for 
some A > 0, I < K < 7r, and p < sin(7r - K), 

ag- < PA everywhere, ax 

I arg K(s) I< K for I arg sI < 0 (with 0 of (6. 1 c)). 

In addition, suppose that RA(s) = AK(s)/(1 + AK(s)) satisfies, uniformly for 
A > 0, the assumptions of Lemma 5.3 with (0 > 0. Then the 1? estimate (6.3) 
holds with a constant which is independent of h > 0 and A > 0. 

The proofs of Theorem 6.1 and Corollary 6.2 follow the lines of the proof of 
Theorem 5.1. The only additional difficulty is the verification of the conditions 
of Theorem 4.1, uniformly in h (and A). The following lemma shows that 
they are implied by (6.1) and the assumptions of Lemma 5.3. 

Lemma 6.3. Let 3 (C) satisfy (6.1). Suppose that {RA} eA is a family of func- 
tions which fulfill the conditions of Lemma 5.3 with (0 > 0 of (6.1). Then the 
coefficients in the expansion (cf (1.3)) 

= 

00 RA ((h) =h 
EZr(n, h)C4 

satisfy for h >0, A)eA: 

Chyib(nhyi). nm' for hp I ?, 
(6.4) hIr,(n, h) - r,(nh)l < { Cnal.1 * nm for hp <1 , 

for all n > 1, where b(t) = t1-l for t e (O, 1), b(t) = t-a- for t > 1. The 
numbers ,u = u(A), a, ,B > 0 are those of Lemma 5.3, and m is the order of 
the method given by (6. lb). Further, 

(6.5) h E Ir,(n + I, h) - r,(n, h)I < { d(h / h) frh > 1, 
n=O- C fri1 

for all I > 1, where d e C[O, x), with d(O) = O, is independent of h and A, 
as is also the constant C in (6.4-5). 

Remark. For n = 0 we have the bound 

(6.6) hIr,(O, h)I C(h? Cfor hu <I 1 

which follows with hr, (O, h) = RA (j (0))/h) and (5.10). 

Proof of Lemma 6.3. (a) By Cauchy's integral formula, 

R(3() 1 I R,(s) ds 
A h =27u ji (6(C)/h -s) 
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with F: Iargsl = q, where 0 < qi < ( . We denote the nth coefficient of the 
power series (a(c) - z) 1 by e(n, z) and thus have 

(6.7) r,(n, h) = 21. jR,(s)e(n, hs)ds 

which resembles the Laplace inversion formula 

(6.8) r (nh) = 2 i jR.(s)enhs ds. 

Our arguments will rely on the following estimate which was derived in the 
proof of Theorem 4.1 in Lubich [14, see (4.5), (4.13)]: 

C 
(6.9) le(O, z)l < for z EF=, 

(6.10) le(n, z) - enZ < C(Izmenz/2l+ IlP ) for zeF, n>1, 

with some 0 < p < 1. We may again suppose R.(O) = 0 without loss of 
generality. Otherwise, we replace R,(s) by R,(s) - RA(O)/( 1 + s/ly) and will 
observe that the coefficients of 

/ 
(c\\ 00 C 

RA(O)/ (1 + h = RA(O)hli Ee(n, -hp) 
n=O 

satisfy (6.4-5). 
(b) We get from (6.7-8) and (6.10) with the substitution w = nz = nhs 

hlr,(n, h) - r,(nh)l l C(h)f(n ml f w'EI 1+ m ' I a Idw+ml 
Iwl<nh,u 

+ C(h)flnfi-m-l 
f 

Er lwl-3+mle w/21 Idwl 
lu)l>nh,u 

+ Cpn min(1, (h,p) ). 
The first integral dominates the second one for nh > 1 , where it is bounded by 
Ch,(nh,) 

- 
Iln m, whereas the second integral is dominating for nh,u ? 1, 

where it is bounded by ChL(nhfh)filnm. Together with the pn term, we 
therefore have (6.4). 

(c) The estimate for hp > 1 in (6.5) follows from the corresponding estimate 
in (6.4)and (6.6). It remains to consider the case hu < 1 . We have 

00 

h l, I(n + 1, h) - r,(n , h)l 
(6.11) n=O 

< j RA(s)l * h E le(n + 1, hs) - e(n, hs)l * Idsl . 
n=O 
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We note that by (6.9) and (6.10), le(l, z) - e(O, z)l < C/(1 + zlz), and 
00 

E le(n + I, z) - e(n, z)l 
n=1 

00 00 00 

? E le(n + 1, z) - e(n+l)zI + E le(n, Z) - enzI + E le(n+l)z - enz, 
n=1 n=1 n=1 

cI Z 
z2I + ICl + lezleI - lez I 

We insert this into (6.1 1) and find that the contribution of the first two terms 
is bounded by C(hpu) . For the last term we have 

LEA : IzI?hj(hj) fIzlzlez 
ez 

ldzl < Clh 
ZEr lzl<h,u l-lezl 

which follows with 
II -e'z <IC 

1-e 

l~ezl 
and 

L| (h,u jl) Iz lez 1 ldz l < C(lh,u)" with 0 << ,3, 
ZEr lzjl>h,ul lez I 

which follows with 

This gives finally (6.5). o 

7. UNIFORM ERROR ESTIMATES OVER THE HALF-LINE 

We take up again the discretized equation (1.2) in which we specify the right- 
hand side as 

n J 

(7.1) Xn +?h Zk(n -j, h)g(tj, xj) = f(tn) -h ZK(n, j, h)g(tj, xJ). 
j=0 j=0 

The right-most term represents a correction of the convolution quadrature which 
is to take account of the behavior of g(t, x(t)) near t = 0. Here, J is a fixed 
(and usually small) integer, and the K(n j, h) are correction weights whose 
construction will be described below. 

Let us now collect the assumptions under which we will show uniform con- 
vergence of xn to x(tn) over the half-line: The discretization method (1.3) is 
to satisfy conditions (6.1). It is thus of order m and A(7r - 0)-stable. Further- 
more: 

(7.2) Equation (1.1) has a solution x E Cm[0, oo) with x(m) E L??(R+) 
corresponding to f E Cm (IR+) with f(m) E L??(T, oo) for every T > 0. 
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(7.3a) g is Crm, and dmg(t, x(t))/dtm E L'(1R+). 
(7.3b) g satisfies the circle condition O0g/Ox - Al < 1 in a tube around the 

solution x, i.e., in { (z, 4): z > 0, 14 - x(T)? < } for some c > 0. 
(7.4a) k is locally integrable and has a Laplace transform K which is analytic 

in a sector S: I args < qp with (0 > 0 and satisfies 
(i) K(s) = ?(lsl f) as s - oo in S, for some B > 0; 

(ii) sK(s) remains bounded as s -* 0 in S; 
(iii) RA(s) = AK(s)/[1 + AK(s)], the Laplace transform of the resolvent, 

satisfies 

RA(s) - RA(O) = O(sIs) as s - O in S for some a > 0. 

(7.4b) K satisfies the circle condition 

I-1/K(s)-A?1l+?d forIargsl<0, forsome d>0. 

We remark that (i) implies k(t) = O(tA 1) as t - 0, and (ii) implies 
k(t) = 0(1) as t -* oo. This follows easily with the Laplace inversion for- 
mula. Conditions (i) and (iii) imply (6.2). In (7.4b) it would suffice if the circle 
condition were satisfied only for s = 3(C)/h with I < 1 and all sufficiently 
small h > 0. 

For example, conditions (7.4a) (i)-(iii) are satisfied for k(t) = t- /2 or e -t 
or 1. They are not quite satisfied for k(t) = cost, whose Laplace transform 
K(s) = 2(s + i) 1 + 2(s - i) 1 is a linear combination of Kj(s + iowj), where 
each Kj(s) satisfies (7.4a). It requires only minor modifications to see that the 
following result remains valid also in such a case. 

We can now state the result that we have been after. 

Theorem 7.1. Under conditions (6.1) and (7.2-4) we have convergence of order 
m uniformly over the half-line, i.e., 

(7.5) lxn - x(tn)? < c * hm for 0 < h < ho, uniformlyfor n > 0, 

provided that the correction weights in (7.1) are suitably constructed. 

For the proof of Theorem 7.1 we need the following approximation results. 
Here, T is a fixed number, 0 < T < 00. 

Lemma 7.2. Under conditions (7.4a)(i) and (6.1) we have 
n m-1 

h E k(n - j, h)u(tj) + h E K(n, j, h)u(tj) = (k * u)(tn) + O(hm) 
1=0 j=0 

uniformly for 0 < nh < T, for every U e Cm[0, T], if K(n, j, h) are chosen 
such that the above quadrature formula is exact for polynomials up to degree 
m - 1. Moreover, JK(n, i, h)l < C(nh)f 1 . 

Lemma 7.3. Under conditions (7.4a) and (6.1) we have 
n m-2 

h E k(n - j, h)u(tj) + h E k(n - j, h)cj u(t1) = (k * u)(tn) + O(hm) 
j=0 1=0 
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uniformly for nh > T, for every u E Cm[O, ox) with u(t) = 0 for t > T/2, if 
cj are chosen as the correction weights of the mth order Newton-Gregory formula 
(= end-point corrections of the trapezoidal rule). 

Example. The correction weights in question are as follows. 
1 

c0= - form = 2, 
2 
7 1 

c 1-H cl= for m= 3, 
5 1 1 

c -- c = 2=-- 2 for m =4. 

Lemma 7.4. Under conditions (6.1), (6.2) we have 
n 

h E r,(n - j, h)v(tj) = (r. * v)(tn) + 0(hm) 
j=O 

uniformly for nh > O, for every v E Cm[O, ox) with v(m) E L' (R+) and v = 0 
in a neighborhood of 0. 
Proof of Lemmas 7.2-4. (a) Lemma 7.2 is essentially Corollary 3.2 of Lubich 
[14]. There, an O(t 1 htm) estimate was obtained, but it was only required that 
the quadrature formula be exact for polynomials up to degree m - 2. Including 
also tm 1 gives an 0(tfihm) estimate and hence the lemma. 

(b) The proof of Lemma 6.3, formula (6.4), applied to K(s) and with = 
-1, shows that for nh > T > 0 

(7.6) lk(n, h) - k(nh)l < c nm = 0(hm). 

With this estimate and the fact that all derivatives of k remain bounded as 
t -* ox, the result follows from classical results on Newton-Gregory quadrature 
formulas. 

(c) Lemma 7.4 follows with the proof of Theorem 3.1 of Lubich [14]. o 

Proof of Theorem 7.1. a) Let us first show that (7.5) holds on bounded intervals 
nh < T < ox: Using Lemma 7.2 and a Lipschitz condition for g, we obtain 
that the error en = lXn - x(t) I satisfies 

n m-1 

en < h ,: lk(n - j,5 h)l * Lej + h E: JK(n, j,5 h)l * Lej + 0(hm). 
j=0 J=O 

Because of 

(7.7) lk(n, h)l < c[(n + I)h]l i' for nh < T 

JK(n, j, h) I < c[(n + 1)h]3 1 

(cf. Lemma 6.3 or see Lubich [14, (5.4)], and Lemma 7.2) a discrete Gronwall- 
type inequality, e.g., Brunner and van der Houwen [2], gives 
(7.8) In- x(t,)n < c(T)hm for nh < T 

where c(T) still grows exponentially with T. 
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(b) Our next aim is to eliminate the correction weights K(n, j, h) with the 
help of Lemmas 7.2 and 7.3. Let T > 0 be fixed, and choose 0 E Cw??[0, ox) 
such that 0(t) = 1 in a neighborhood of 0 and 0(t) = 0 for t > T/2. We 
introduce the notations 

0 
Xn = ?0(tn)xnn Xn = (I - 0(tn))Xn 

x?(t) = 4(t)x(t), x (t) = (1 - OMWO) 

g0(t, x) = 0(t)g(t, x), g+(t, x) = (1 - 0(t))g(t, x), 

and rewrite (7.1) as 
n 

X4+ + h E k(n - j, h)g+(tj, xj) 
j=0 

n 

= f(tn) - Xn- h E k(n - j, h)g?(t1, xj) 
j=0 

m-1 
- h > K(n, j, h)g?(tj, xj) 

j=0 

where we choose K(n, j, h) as in Lemmas 7.2 and 7.3. Since k(n, h) are 
uniformly bounded for nh > T/2 by (7.6), we commit by (7.8) only an error 

of magnitude 0(hm) if we replace xj by x(tj) and x 0 by x (ta) on the 
right-hand side. Lemma 7.3 with u(t) = go(t, x(t)) then gives, uniformly for 
n >0, 

n 

(7.9) X+ + h , k(n -j, h)g+(t1, xj) = v(tn) + 0(hm) 
j=0 

with v(t) = f(t) - x?(t) - (k * u)(t) which satisfies the conditions of v in 
Lemma 7.4. 

(c) We know from ?2 (proof of Theorem 2.3) that equation (7.9) is equivalent 
to 

n 

X +4 h 1r A1'r,(n -j, h)(g+(tj, xj) - A<+) 
1=0 

n 

= V(tn) - h 3 r,(n - j, h)v(tj) + 0(hm) 
j=0 

where the 0(h m) term is preserved uniformly for n > 0 because of IIhr.(., h)11I 
< const, which follows from Lemma 6.3. Now we use Lemma 7.4 on the right- 
hand side to get 

n 

(7.10) X+ + h Arj(n -j, h)(g+(tj, xj) - A<+) = w(tn) + 0(hm), 
J=0 

with w = v - r v. 
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(d) Next we take N with T/2 < Nh < T, and for nh > T we split the sum 
as 

n 

Xn + h , A tr,(n - j, h)(g(t1, x) -xj) 
j=N 

(7.11) N-I 

w(tn)- h , Al'rA(n - j, h)(g+(t1, x(tj)) - Ax+(t1)) + O(h n) 
j=O 

where we have noted g+ = g and xy = xj on the left-hand side, and have 
once more used (7.8) on the right-hand side. But now we observe that relation 
(7.11) remains valid if we replace the numerical solution {Xn}n>N by the exact 
solution values {x(tn)}ln>N. This follows from Lemma 7.4 and the identity 

x + +7r, * (g+(x) - Ax+) = w. So we can finally apply the l stability 
estimate to conclude 

(7.12) Ixn-x(tn)l < Chm for n > N, 

which together with (7.8) completes the proof of the theorem. 0 

Remark. For weakly singular kernels like k(t) = t-1/2 the solution of (1.1) 
is usually not smooth at t = 0 as required in (7.2), but has an expansion 
in powers of Vt near 0. If the correction weights are chosen such that the 
quadrature formula becomes exact for t0, t1/2,..., tm 3/2, tm 1, then we still 
get convergence of order m as in Theorem 7.1 , cf. Lubich [14, ?5] for the 
extensions of Lemmas 7.2 and 7.3 which are then needed. 

8. THE CIRCLE CONDITION THEOREM IN Lp FOR I < p < 00 

Close scrutiny reveals that the main ingredient in the proof of the L? Cir- 
cle Condition Theorem 5.1 is the inequality (5.4) which in effect says that 
the linearized integral operators in equation (5.3) have bounded inverses on 
L??(R+), uniformly in z. If the same statement holds in an Lp setting, for all 
1 < p < x, then we have a proof of the following theorem. 

Theorem 8.1 (Circle Condition Theorem in LP) . Let 1 < p < oo. Suppose that 
(5.1) holds in addition to the assumptions of the L2 Circle Condition Theorem 
2. 1. Then the integral equation (1. 1) has a unique solution x E Lp (R+) for every 
f E LP(R+). Moreover, if x and x are the solutions of (l.l) corresponding to 
f,feLLp(R), then 

(8.1) IIX- XHLP(R+) ? c Ilf -f1LP(R+) 

for some c < oo. 

Corollary 8.2. Under conditions (2.9-10) and (5.7-8) the Lp estimate (8.1) 
holds with a constant c which is independent of A > 0. 
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As pointed out, it suffices to prove the boundedness of the inverses of the 
linearized operators on LP(R+). We phrase the result in the style of ?3. 

Let Q = R or R+, and let b E L1(R) and e E C(R), with e(O) = O. We 
consider the class of integral operators S defined by 

(8.2) Sy(t) = Jk(t, r)a(r)y(r)dr, t eQ 

where 

(8.3) IjahLO(Q) < 1 

and where not only k E 57(b, e), see ?3, but also k E 57(b, e), in which 
k(t, r) = k(r, t). We denote this class by V(b, e). As in ?3, each Y is a 
bounded linear operator on every Lp(Q), 1 < p < oo. 

Theorem 8.3. Let 1 < p < oo, let A E C, and let F c Ac(b, e). If A a 
v2(9) 

for all S E 9, and 

(8.4) sup 11(Y-) IIL2(Q) < 00 

then A 0 uP(?f) for all S E ' and 

(8.5) sup I1(% J-f) IILP(Q) < 00. 

The suprema in (8.4-5) are taken over all S E F . 

Proof. The essential tools in the proof are Theorem 3.1 for p = 2, the M. Riesz 
convexity theorem, as well as a duality argument. 

Since A cannot equal 0, we may assume I = 1 in the following. From 
Theorem 3.1 we already know that 

SUP II(>--'S7 ) 11 L- (i2) < ?? 

Since the operators (J -S) 1: L2(Q) - L 2(Q) and (>J -J- : L??(Q) 
L? (Q) coincide on L 2(Q) n L? (Q), it follows from the M. Riesz convexity 
theorem, Stein and Weiss [18, p. 179], that (Jf - S') is invertible on each 
LP(Q), 2p<<oo,and 

(8.6) sup IIJ IILP(Q) < 00 

We now apply the same argument to the operators5 , 

5?y(t) = f k(r, t) a(r) y(r) dr, t E Q . 

First we verify (8.4) for the operators 5. Note that we may factor 5 as 
5 = -, where sly(t) = a(t)y(t) and M is the integral operator with 
kernel k(r, t). Now the operators -W are the transposes of the operators 

S', and thus have the same L 2(Q) spectra and norms: 

lI1)L) = 2 HJ-7) IIHL2(Q). 
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Moreover, since 

(8.7) (J mv) J1 = + w("_?- Y _X 

we also obtain that 

(8.8) sup IIQ>-7111L2(Q) ? 1 +c supT(J-J IIL2(Q) < 00 

with c = liblILl(Q) by Young's inequality. 
We now apply Theorem 3.1 to the operators 56 to obtain that each (J5 -5?) 

is invertible on L?? (Q) and 

SUP IlGJ5 IIII2o (Q) < 00. 

By the M. Riesz convexity theorem, (JY - 5) is then invertible also on each 
LP(Q), 2<p<oo,and 

SUP IIJ-5) IIILP(Q) < 00. 

Now the standard duality argument shows that the transposes > -56", with 

5?Ty(t) = a(t) k(t, T) y(T) dT, t EQ 

are invertible on Lq(Q), 1 < q < 2, and since 

I( I T) -IL( q = lI(J-')1IILP(Q) if I + q1 

we thus have that 

Finally, a reasoning similar to (8.7-8) shows that since 5TT = we also 
have that J -_ Ts = - Y 7 is invertible, and 

sup IY I -S) 1lLq(Q) < 00 

for 1 < q < 2. Combined with (8.6), this is the theorem. o 

To prove Theorem 8.1, we may now copy the proof of Theorem 5.1, replacing 
every occurence of L?? (lR+) by Lp (R+) as we go along. In particular, inequality 
(5.4) with Lp norms follows from Theorem 8.3. 
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